JVM垃圾回收器工作原理及使用实例介绍
本文首先介绍了JVM各类垃圾回收器及其工作原理,接着通过实例演示它们的使用方式及需注意事项,最后总结了垃圾回收器的配置方式及参数意义。 1. 垃圾收集基础 Java语言的一大特点就是可以进行自动垃圾回收处理,而无需开发人员过于关注系统资源,例如内存资源的释放情况。自动垃圾收集虽然大大减轻了开发人员的工作量,但是也增加了软件系统的负担。 拥有垃圾收集器可以说是Java语言与C语言的一项显著区别。在 C语言中,程序员必须小心谨慎地处理每一项内存分配,且内存使用完后必须手工释放曾经占用的内存空间。当内存释放不够完全时,即存在分配但永不释放的内存块,就会引起内存泄漏,严重时甚至导致程序瘫痪。 以下列举了垃圾回收器常用的算法及实验原理: 1.1. 1、引用计数法 (Reference Counting) 引用计数器在微软的 COM 组件技术中、Adobe 的 ActionScript3 种都有使用。 引用计数器的实现很简单,对于一个对象 A,只要有任何一个对象引用了 A,则 A 的引用计数器就加 1,当引用失效时,引用计数器就减 1。只要对象 A 的引用计数器的值为 0,则对象 A 就不可能再被使用。 引用计数器的实现也非常简单,只需要为每个对象配置一个整形的计数器即可。但是引用计数器有一个严重的问题,即无法处理循环引用的情况。因此,在 Java 的垃圾回收器中没有使用这种算法。 一个简单的循环引用问题描述如下:有对象 A 和对象 B,对象 A 中含有对象 B 的引用,对象 B 中含有对象 A 的引用。此时,对象 A 和对象 B 的引用计数器都不为 0。但是在系统中却不存在任何第 3 个对象引用了 A 或 B。也就是说,A 和 B 是应该被回收的垃圾对象,但由于垃圾对象间相互引用,从而使垃圾回收器无法识别,引起内存泄漏。 1.2. 2、标记-清除算法 (Mark-Sweep) 标记-清除算法将垃圾回收分为两个阶段:标记阶段和清除阶段。一种可行的实现是,在标记阶段首先通过根节点,标记所有从根节点开始的较大对象。因此,未被标记的对象就是未被引用的垃圾对象。然后,在清除阶段,清除所有未被标记的对象。该算法最大的问题是存在大量的空间碎片,因为回收后的空间是不连续的。在对象的堆空间分配过程中,尤其是大对象的内存分配,不连续的内存空间的工作效率要低于连续的空间。 1.3. 3、复制算法 (Copying) 将现有的内存空间分为两快,每次只使用其中一块,在垃圾回收时将正在使用的内存中的存活对象复制到未被使用的内存块中,之后,清除正在使用的内存块中的所有对象,交换两个内存的角色,完成垃圾回收。 如果系统中的垃圾对象很多,复制算法需要复制的存活对象数量并不会太大。因此在真正需要垃圾回收的时刻,复制算法的效率是很高的。又由于对象在垃圾回收过程中统一被复制到新的内存空间中,因此,可确保回收后的内存空间是没有碎片的。该算法的缺点是将系统内存折半。 Java 的新生代串行垃圾回收器中使用了复制算法的思想。新生代分为 eden 空间、from 空间、to 空间 3 个部分。其中 from 空间和 to 空间可以视为用于复制的两块大小相同、地位相等,且可进行角色互换的空间块。from 和 to 空间也称为 survivor 空间,即幸存者空间,用于存放未被回收的对象。 ...